
An Adaptive Approach for the Calculation of Ensemble Gridpoint Probabilities

BENJAMIN T. BLAKE,a,b JACOB R. CARLEY,b TREVOR I. ALCOTT,c ISIDORA JANKOV,c,d

MATTHEW E. PYLE,b SARAH E. PERFATER,a,e AND BENJAMIN ALBRIGHT
e,f

a I.M. Systems Group, Inc., Rockville, Maryland
bNOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

cNOAA/Earth System Research Laboratory, Boulder, Colorado
dCIRA, Colorado State University, Fort Collins, Colorado

eNOAA/NWS/NCEP/Weather Prediction Center, College Park, Maryland
f Systems Research Group, Inc., Colorado Springs, Colorado

(Manuscript received 28 February 2018, in final form 15 June 2018)

ABSTRACT

Traditional ensemble probabilities are computed based on the number of members that exceed a threshold

at a given point divided by the total number of members. This approach has been employed for many years in

coarse-resolution models. However, convection-permitting ensembles of less than ;20 members are gener-

ally underdispersive, and spatial displacement at the gridpoint scale is often large. These issues have moti-

vated the development of spatial filtering and neighborhood postprocessing methods, such as fractional

coverage and neighborhood maximum value, which address this spatial uncertainty. Two different fractional

coverage approaches for the generation of gridpoint probabilities were evaluated. The first method expands

the traditional point probability calculation to cover a 100-km radius around a given point. The second

method applies the idea that a uniform radius is not appropriate when there is strong agreement between

members. In such cases, the traditional fractional coverage approach can reduce the probabilities for these

potentially well-handled events. Therefore, a variable radius approach has been developed based upon en-

semble agreement scale similarity criteria. In this method, the radius size ranges from 10 km for member

forecasts that are in good agreement (e.g., lake-effect snow, orographic precipitation, very short-term fore-

casts, etc.) to 100 km when the members are more dissimilar. Results from the application of this adaptive

technique for the calculation of point probabilities for precipitation forecasts are presented based upon

several months of objective verification and subjective feedback from the 2017 Flash Flood and Intense

Rainfall Experiment.

1. Introduction

The value and skill offered by convection-permitting

models (CPMs) has been recognized in many opera-

tional numerical weather prediction (NWP) centers in

the past decade through the general widespread imple-

mentation of deterministic CPMs (e.g., Saito et al. 2006;

Smith et al. 2008; Rogers et al. 2009; Baldauf et al. 2011;

Seity et al. 2011; Tang et al. 2013). CPMs have been

shown to develop storms with more realistic attributes

that are not present at comparatively coarser spatial

resolutions where convection is parameterized and,

consequently, they produce better forecasts (e.g., Done

et al. 2004; Kain et al. 2006; Lean et al. 2008; Roberts and

Lean 2008; Weisman et al. 2008; Schwartz et al. 2009;

Clark et al. 2010); however, errors grow quickly at such a

fine scale (Lorenz 1969; Hohenegger and Schär 2007;

Melhauser and Zhang 2012; Radhakrishna et al. 2012).

Many NWP centers, including the National Centers

for Environmental Prediction (NCEP), have begun

to implement a convection-permitting ensemble (CPE)

prediction system or have strategies in place to do

so (Gebhardt et al. 2011; Peralta et al. 2012; Tennant

2015; Rogers et al. 2017). A CPE has the capability to

provide information about a wide range of solutions that

are related to the timing, location, and structure of

convection and are sensitive to small environmental

changes, which helps to quantify forecast uncertainty.

Some obstacles still remain in the extraction of useful

information from CPEs, such as effective calibration

techniques and the generation of ensemble probabilistic

output. Probabilistic guidance allows forecasters to
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quantify uncertainty and allows users to make better

decisions compared to those made with yes–no forecasts

(Murphy 1993). As has been recognized in the forecast

verification community (e.g., Gallus 2002; Baldwin and

Kain 2006; Roberts and Lean 2008), the skill at the

gridpoint level in CPMs tends to be relatively poor,

owing to well-known challenges associated with the

double penalty (e.g., Gilleland et al. 2009), when the

spatial scale of a simulated phenomenon is less than or

equal to the scale of the mean spatial forecast errors.

Objective point verification methods require a nearly

perfect match for a forecast to be considered skillful;

hence, traditional verification methods tend to favor

comparatively smoother fields of lower-resolution models

over the more realistic fields present at higher spatial

resolutions (e.g., Wolff et al. 2014). In addition, CPEs

are generally underdispersive (Hohenegger et al. 2008;

Novak et al. 2008; Gebhardt et al. 2011; Vié et al. 2011;

Romine et al. 2014; Schwartz et al. 2014), yielding low

spread that can be attributed to model biases or not

accounting for all potential sources of forecast error.

Addressing the double-penalty problem in CPMs, along

with the need to increase spread in CPEs, extends to

the generation of useful probabilistic output and has

resulted in the development of several different en-

semble postprocessing approaches, including fractional

coverage (Theis et al. 2005; Roberts and Lean 2008;

Schwartz et al. 2010) and neighborhood maximum value

methods (Harless et al. 2010; Jirak et al. 2012; Hitchens

et al. 2013).

Fractional coverage probabilities, which are similar in

approach to the verification metric known as the frac-

tions skill score (FSS; Roberts and Lean 2008), are ef-

fectively point probabilities that acknowledge the

existence of spatial uncertainty in a forecast. These

probabilities represent the fraction of points from all

members within a fixed radius of influence around each

grid point that exceed a threshold. Fractional coverage

is an example of a spatial filtering technique for in-

creasing ensemble spread, where all grid points within

the radius of influence are considered ensemble ‘‘mem-

bers.’’ Other approaches, like neighborhood maximum

value, transform the forecast from a point probability

to an areal probability (i.e., the probability of exceed-

ing a threshold within some radius of a grid point).

Schwartz and Sobash (2017) provide a thorough analysis

of these two approaches, referring to fractional coverage

as a neighborhood approach for deriving grid-scale

probabilities and to neighborhood maximum value

as a neighborhood approach for deriving non-grid-scale

probabilities.

An alternative method of characterizing forecast en-

semble spatial uncertainty was recently proposed by

Dey et al. (2016). When applying filtering techniques

by using only one scale over the whole domain, as with

a fixed radius of influence for the fractional coverage

approach, geographic and temporal variability in en-

semble spread is ignored (Dey et al. 2014). These dif-

ferences in spread arise because different phenomena

(e.g., convective, frontal, or winter precipitation) may

exhibit varying degrees of predictability that can evolve

over time. Hence, it is useful to process forecasts in

a manner that preserves some spread characteristics

from the raw ensemble. Dey et al. (2016) proposed the

ensemble agreement scale (EAS) technique to provide

an estimate of spatial agreement among CPE members

at each grid point by varying the radius of influence at

each ensemble grid point according tomember–member

similarity criteria.

This paper proposes a refinement of the traditional

fractional coverage method via the implementation

of the EAS approach to provide locally adaptive radii

of influence. If the forecasts at a grid point are in ex-

cellent agreement, then a small radius is utilized for the

calculation of ensemble probabilities (and vice versa).

This method would be applicable to a wider range of

scenarios where ensemble spread is low as a result

of inherently greater predictability (e.g., orographic

precipitation, lake-effect snow, very short-term fore-

casts, etc.). When there is strong agreement among

members, a large uniform radius is not appropriate; in

such cases, the traditional fractional coverage approach

can reduce the probabilities for these potentially well-

handled events. While we know the actual magnitude

of spatial spread in the ensemble is usually inadequate,

we are hypothesizing that the spread–skill relationship

is sufficiently adequate such that it is desirable to pre-

serve some of that information in the postprocessed

product, and doing so with the EAS technique results

in better forecasts. These refined point probabilities

will be compared to fractional coverage point proba-

bilities that use a fixed radius of influence, as well as

traditional ensemble point probabilities. Section 2 pro-

vides an overview of the experimental design, the dif-

ferent approaches for generating probabilities, and the

verification methods. Section 3 presents results from

an idealized experiment along with objective and sub-

jective verification statistics, followed by discussion and

conclusions in section 4.

2. Methods

a. Experimental design

Version 2 of the High Resolution Ensemble Forecast

system (HREFv2; Rogers et al. 2017) herein refers to
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the collection of model runs comprising a multimodel

ensemble of eight CPMs. There are four ARW-based

members, two of which are time-lagged, and four

NMMB-based members, two of which are time lagged.

Here, the HREFv2 membership was combined into

probabilistic products not directly related to the opera-

tional HREFv2 QPF probability products, which are

based on the neighborhood maximum approach. The

HREFv2 data in this study covered forecasts from

the 0000 and 1200 UTC cycles beginning on 3 February

2017 and running through 30 September 2017. However,

the system was not operational during the period of the

study and was, therefore, subject to outages.

The primary focus was on 6-hourly quantitative pre-

cipitation forecasts (QPFs). Thus, the probabilities

presented herein represent the chance of 0.5 or 1 in. of

precipitation falling over a 6-h period. The 6-hourly

Stage IV precipitation product was used as the verify-

ing dataset for quantitative precipitation estimation

(QPE; Lin and Mitchell 2005). Prior to the generation

of probabilities, all accumulated precipitation values

were budget interpolated (Accadia et al. 2003) to NCEP

grid 227, a 5-km grid covering the contiguous United

States, and the QPF from each ensemble member

was bias corrected via a quantile-mapping technique

(Scheuerer and Hamill 2015; Alcott et al. 2017). Bias

correction coefficients were determined by calculating

a second-order best fit between precipitation quantiles

in the 50 most recent QPF–QPE pairs.

b. Probability methods

Three different methods for generating ensemble

probabilities were evaluated. The first approach was

the ‘‘Point’’ method, which calculated the average

of the binary probabilities from each of the ensem-

ble members at a grid point. For each member, the

binary probability at a grid point was 1 if the specified

threshold was exceeded and 0 otherwise. These

probabilities represented traditional ensemble point

probabilities.

The secondmethodwas the fractional coverage (Frac)

approach (Theis et al. 2005; Schwartz et al. 2010). The

point probability field was calculated in a way that ac-

counted for the spatial uncertainty in CPE probabilistic

forecasts, where all grid points whose centers fell

within a radius of influence around a given point were

considered part of the spatial filter. A 100-km radius was

chosen for this study because it produced the most re-

liable probabilistic forecasts of warm season 6-h pre-

cipitation during 2015–16 with the High Resolution

Rapid Refresh Time-Lagged Ensemble (HRRR-TLE;

not shown). For the Frac approach, the probability at

grid point i was therefore given by

P
i
5

1

N
b
N

ens

�
Nb

m51
�
Nens

k51

BP
km

. (1)

The number of grid points within r 5 100km of grid

point i was Nb, Nens was the number of ensemble

members, and BPkmwas the binary probability for point

m in Nb for ensemble member k. Theis et al. (2005) and

Roberts and Lean (2008) utilized a square spatial filter

around each grid point, while a circular spatial filter was

used in this study, similar to the approach taken by

Schwartz et al. (2010).

The third approach, the EAS fractional coverage

(EAS) method, is proposed as a possible refinement

to the Frac method. The only difference between Frac

and its EAS counterpart is that a different radius was

applied at each grid point based on the local agreement

scale among the member forecasts. The radius of influ-

ence for the spatial filter was defined as the smallest

scale over which the member forecasts were deemed

suitably similar (Dey et al. 2016). The similarity criteria

take the following form:

D
ij
5

8><
>:

(A2B)2

(A2 1B2)
, if A. 0 ^ B. 0

1 , if A5 0 _ B5 0

9>=
>;

, (2)

D
crit,ij

5a , and (3)

D
ij
#D

crit,ij
. (4)

The average value of the exceedance grid within the

spatial filter for two forecasts was represented by A

and B in (2). An exceedance grid comprises ones

and zeros for points that did and did not exceed the

threshold, respectively. One must calculate Dij for all

member–member comparisons to obtain a mean value

forDij; there were 28 possible pairs for the eight-member

HREFv2 ensemble because 8C2 5 8!/[2!(8–2)!]. The

similarity criteria parameter a was related to the

amount of bias tolerated, where a 5 0 signified no

bias was tolerated at the grid scale and a 5 1 means

any bias was tolerated. Consequently, for a smaller a

it was more difficult to satisfy (4) at smaller radii, and

vice versa. Dey et al. (2016) chose a value of 0.5 for

a; here, a was set to 0.1. Dey et al. used a differ-

ent variation of (3), which yielded different values

of Dcrit for different radii. Their formulation yielded

low radii values because it was relatively easy

to achieve (4), which increased the sharpness of the

EAS probabilities. Here, we setDcrit to a constant value

a independent of radius. Our simpler specification of

Dcrit made it progressively harder to satisfy (4) as the

radius was decreased, and this decreased the sharpness
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of the EAS probabilities. We chose 100 km for the

maximum possible radius, which was initially the radius

at all grid points. For any grid points where (4) was

satisfied, a suitably similar scale had been found, and the

previous radii were overwritten. Next, the radius was

decreased by 33 dx, and the calculations were repeated

for each successive radius. This iteration yielded possi-

ble radii of 10, 25, 40, 55, 70, 85, and 100km. Before

the radii were used in (1) they underwent a smooth-

ing procedure to remove any spatial discontinuities.

To accomplish the smoothing, a 20-km Gaussian kernel

filter was applied to the radii field (Silverman 1986).

The final probability field was then obtained via spatial

filtering using the variable radii in (1).

An example of what the probability field for each

approach looks like is provided in Fig. 1. These proba-

bilities represented the chance of 0.5 in. of precipita-

tion accumulating over the 6-h period beginning at

1800 UTC 17 February 2017 and ending at 0000 UTC

18 February 2017, and they were 24-h forecasts from

the 17 February 0000 UTC cycle. The corresponding

6-h Stage IV precipitation is also shown for comparison

(Fig. 2). The Point probabilities were quite sharp be-

cause they contained more 0% and 100% values than

the other methods, especially over the Sierra Nevada

and along the Pacific coast. The probabilities gener-

ally aligned well with the QPE. The Frac probabilities

were much smoother and most of the 95%–100% re-

gions that were in the Point probabilities were not

present, except for a solitary maximum right along the

California coast. However, most of the 95%–100% re-

gions in the Frac probabilities exceeded 0.5 in. in 6 h.

The EAS probabilities preserved many of the 95%–

100% values over the Sierra Nevada and along the Pa-

cific coast because the radii of influence were smaller

(Fig. 1d), indicating the ensemble members were in

good agreement over those locations.

c. Verification

Version 6.0 of the Model Evaluation Toolkit’s (MET)

Grid Stat tool was used to generate objective verifica-

tion statistics for the matched forecast and observation

grids (Jensen et al. 2017). All of the forecast grid points

in the verification region were matched to observation

FIG. 1. Plots of probabilities (%) of 0.5 in. of precipitation accumulating over the 6-h period beginning at

1800UTC 17 Feb 2017 and ending at 0000UTC 18 Feb 2017 for the (a) Point, (b) Frac, and (c) EASmethods. These

probabilities are 24-h forecasts from the 0000 UTC 17 Feb HREFv2 cycle. (d) A plot of the radii values (km)

utilized by the EAS method.
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grid points on the same grid, and all the matched points

were then used to compute the statistics. Verification

was conducted over three distinct regions, which com-

prise subsets of the NCEP verification subregions

(Fig. 3). The East region included the Appalachian

Mountains (APL), Northeast Coast (NEC), Southeast

Coast (SEC), Midwest (MDW), Lower Mississippi

Valley (LMV), and Gulf of Mexico Coast (GMC). The

West included the Northern Mountains (NMT), South-

ern Mountains (SMT), Great Basin (GRB), Northwest

Coast (NWC), Southwest Coast (SWC), and Southwest

Desert (SWD). The CONUS region was the union of

the East and West regions, and also included Northern

Plains (NPL) and Southern Plains (SPL). The verifica-

tion was confined to land-only points; while the Stage

IV grid extended offshore, the predefined NCEP veri-

fication regions depicted in Fig. 3 were only over land.

The three primary objective verification techniques

used in this study were the fractions Brier score (FBS;

Roberts 2005), attributes diagrams (Hsu and Murphy

1986; Wilks 1995; Hamill 1997), and area under the re-

ceiver operating characteristic (ROC) curves (AUCs;

Mason and Graham 1999; Jolliffe and Stephenson 2003;

Hamill and Juras 2006). Each provides different insights

into determining the accuracy and reliability of proba-

bilistic forecasts.

The Brier score (Brier 1950; Jolliffe and Stephenson

2003) is often used to compare probabilistic forecasts

to a dichotomous observational field. The BS is defined

as the mean squared error of a probability forecast, and

can be decomposed into reliability, resolution, and un-

certainty. It quantifies the accuracy of a probabilistic

forecast, which is the degree to which the forecasts and

the observations agree. The BS averages the squared

differences between pairs of forecast probabilities and

the binary observation probabilities, where the proba-

bility is 1 if the event occurs and 0 if it does not occur.

The BS ranges from 0 to 1, with 0 being a perfect

forecast:

BS5
1

N
�
N

i51

(p
i
2 o

i
)2 . (5)

The total number of grid points is represented by N, i is

a grid point, p is the forecast probability, and o is the

binary observation probability. The BS is sensitive to

the base rate or climatological frequency of an event.

Forecasts of rare events, such as those exceeding 0.5 or

1.0 in. of accumulated precipitation in 6h, can have a

very small BS without having much actual skill because

grid points with zero precipitation in either the obser-

vations or model forecast dominate the score. A varia-

tion on the BS is the FBS, where the dichotomous

observational field is transformed into an analogous

field of observation-based fractions. The forecast point

probabilities and the observed fractions are then di-

rectly compared. Note that the FBS only differs from

the traditional BS in that the observation values in (5)

are no longer binary and are allowed to vary between

0 and 1 through the application of (1). Like the BS, the

FBS is negatively oriented, where a score of 0 indicates

perfect performance and a larger FBS indicates poorer

correspondence between the model forecasts and the

observations.

A reliability diagram is a graphical method for

assessing the reliability, resolution, and sharpness of a

FIG. 2. A plot of the 6-h Stage IV accumulated precipitation (in.)

valid from 1800 UTC 17 Feb to 0000 UTC 18 Feb 2017. The ac-

cumulated precipitation values were budget interpolated to NCEP

grid 227, a 5-km grid covering the CONUS.

FIG. 3. The current NCEP verification subregions. There are

14 subregions over the CONUS: NEC, APL, SEC, GMC, LMV,

MDW, NPL, SPL, NMT, SMT, GRB, NWC, SWC, and SWD. See

text for subregion abbreviations.
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probability forecast. Reliability is the degree to which

the frequency of occurrence of the event agrees with

the forecast probability. For instance, a perfect reli-

ability means that a 40% probability forecast would

be observed 40% of the time. Resolution is the ability

of the forecasts to resolve the set of events into subsets

with different relative frequencies of the event, repre-

senting the degree to which an event occurs relative to

its climatological frequency. Climatology forecasts do

not discriminate between events and nonevents and,

therefore, have no resolution. Resolution is graphi-

cally represented by the distance of a point on the re-

liability diagram from the climatological frequency or

‘‘no resolution’’ line, and is computed by weighting the

distance by the number of forecasts made at that fore-

cast probability. Sharpness refers to the distribution

of forecast probabilities over a verification sample. If

probabilities of 0% and 100% are often utilized, the

forecast is classified as sharp.

To create a reliability diagram, observation relative

frequencies are plotted against the forecast probabili-

ties. A perfectly reliable forecast would result in a di-

agonal line that is oriented from the bottom-left corner

to the top-right corner of the plot. When the resultant

curve deviates from the perfect reliability line, the

forecasts are either underforecasts or overforecasts.

Underforecasting is occurring when the curve is above

the perfect reliability line and overforecasting is occur-

ring when the curve is below the line. Another version

of a reliability diagram includes the no-resolution (cli-

matology) and ‘‘no skill’’ lines, and is referred to as an

attributes diagram (Wilks 1995). The no-skill line, lo-

cated halfway between the perfect reliability and no-

resolution lines, depicts where resolution is equal to

reliability and is in reference to the Brier score. If the

curve drops below the no-skill line, the forecast is said

to have no skill.

A ROC curve is utilized for evaluating the discrimi-

nation of a forecast. Discrimination is the ability of a

forecast system to distinguish between occurrences and

nonoccurrences of an event. To create a ROC curve,

the probability of detection (POD) is plotted against the

probability of false detection (POFD) at each forecast

probability threshold. POD, or hit rate, is the fraction of

events that were correctly forecast to occur. Conversely,

the POFD, also referred to as the false alarm rate, is the

proportion of nonevents that were forecast to be events.

Here, the AUC is computed via trapezoidal integration

(Mason 1982), where an AUC 5 1 signifies a perfect

forecast and an AUC 5 0.5 indicates random forecasts

(Marzban 2004). AUC values larger than ;0.7 are

generally considered to represent useful probabilistic

forecasts that discriminate between events and non-

events (Buizza et al. 1999). Correct forecasts of non-

events are determined over all locations in the domain,

such that adding in large areas where little to no pre-

cipitation occurred improves the AUC by lowering the

POFD. Consequently, in most rare-event forecasting

applications, the points on a ROC diagram are located

on the far left side (e.g., Schwartz and Sobash 2017); this

signifies that the AUC is sensitive to the height of the

‘‘top most’’ point, which is associated with the lowest

nonzero probability.

In addition to the aforementioned objective verifi-

cation measures, the three probability methods were

subjectively evaluated during the 2017 Flash Flood

and Intense Rainfall Experiment (FFaIR; Perfater and

Albright 2017). FFaIR is an annual experiment hosted

by the Hydrometeorological Testbed (HMT) at the

Weather Prediction Center (WPC). The experiment

was conducted over the course of four weeks, begin-

ning 19 June 2017 and ending 21 July 2017; the

experiment was not held the week of 4 July. Each

morning, participants were shown the three types of

FIG. 4. Plots of three circles representing three different forecast scenarios for three ensemble member forecasts: (a) a large amount of

overlap, (b) a small amount of overlap, and (c) no overlap. Each circle is the same size, and the centers of the circles are equidistant from

one another.
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FIG. 5. Plots of the Point, Frac, and EAS probabilities (%) for each of the three scenarios depicted in Figs. 4a–c. We considered the

arbitrary threshold to be exceeded for any grid points that fell inside the circle. Plots of the radii values utilized by theEASmethod are also

displayed.
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experimental HREFv2 probabilities for 0.5 in. of QPF

valid from 1800 to 0000 UTC on day 1 over a lim-

ited domain chosen by the testbed participants for

the 6-h probabilistic flash flood (PFF) forecast. A 6-h

Multi-Radar/Multi-Sensor (MRMS) system QPE was

also displayed for verification. Participants were asked

to comment on the utility of each approach and to

subjectively rank the performance of eachmethod on a

scale from 1 to 10 based on how well the probabi-

listic values represented what occurred. A score of

1 indicated a very poor forecast, and a score of 10

represented a great forecast. Participants also utilized

the methods in the daily experimental 6-h PFF forecast

process.

3. Results

a. Idealized experiment

An idealized experiment was conducted in order to

better understand the strengths and weaknesses of each

approach. Three circles were plotted for three different

degrees of overlap: a large amount of overlap, a small

amount of overlap, and no overlap (Fig. 4). Each circle

was the same size, and the centers of the circles were

equidistant from one another in each scenario. The

different degrees of overlap were designed to represent

three different types of forecast scenarios for an en-

semble of three member forecasts. Large overlap be-

tween the circles represented a forecast where all three

members were in good agreement with each other. On

the other hand, less overlap between the circles

signified a forecast where the members were not in good

agreement. Here, we considered the arbitrary threshold

to be exceeded for any grid points that fell inside the

circle. Each probability method was applied to each

scenario.

For the case where there was the most overlap, the

three methods were all effective at identifying the

region where the forecasts were in good agreement

(Fig. 5a). The region of 95%–100% probability was

smaller for Frac than for the Point and EAS methods.

Note that the Point probabilities inherently have

FIG. 6. Graphs of FBS as a function of spatial scale (km) for the Point (black line), Frac (red line), and EAS (blue

line) approaches at the 0.5-in. threshold over the (top) CONUS and (bottom)West verification regions for 3 Feb–30

Sep 2017. Pairwise difference curves for Point2 EAS (dashed blue line), Point2 Frac (dashed red line), and EAS2
Frac (dashed teal line) are also displayed. The 95% bootstrap confidence intervals for the difference curves were

obtained using 1000 bootstrapping replications. If the differences are statistically significant, the confidence intervals

are depicted in boldface. Triangles are associated with confidence intervals where the differences are not statistically

significant.
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sharp transitions between 0%, 33.3%, 66.7%, and

100%, while the Frac and EAS probabilities ap-

peared smoother owing to their computations over a

spatial filter via (1). Other groups have dealt with these

sharp transitions by applying a Gaussian filter to smooth

the probabilities (e.g., Harless et al. 2010; Hitchens et al.

2013). When there was a small degree of overlap (Fig. 5b),

the Point method produced a region of 100% confidence

where all three circles overlap. The values sharply dropped

off to 66.7% and 33.3% once outside the region of

interest. The Frac method depicted maximum proba-

bilities of 60%–70% where all three circles overlap,

and placed 30%–60% probabilities over the regions

where two of the three circles overlap. EAS high-

lighted a small region of 95%–100% confidence where

all three circles overlap, and depicted 30%–80%

probabilities over the regions where two of the three

circles overlap. For the scenario where there was no

overlap between the circles (Fig. 5c), the Point ap-

proach had an area of 0% probability in the center

where none of the circles were located. The Frac and

EASmethods produced low probabilities of 10%–30% in

the center because they took neighboring grid points

into account, and they were nearly indistinguishable,

except for a local minimum of 10%–20% in the EAS

field corresponding to the lower radii values.

A forecaster looking at three forecasts that do not

overlap but are relatively close to one another would

likely place an emphasis on the center of those three

forecasts or along the edges where they are closest to-

gether. The idealized circles highlight a major flaw

with the traditional point probabilities, which depicted

a 0% probability over the region where none of the

circles overlap. The Frac method produced a much

smoother probability field, resulting in nonzero proba-

bilities over the region where none of the circles overlap,

but it was difficult to achieve high probabilities with

this approach. This was evident in the case of small

overlap; Frac depicted 60%–70%probabilities where all

three circles overlap, and the Point and EAS methods

depicted 95%–100% probabilities. This scenario could

be analogous to an orographic precipitation event,

where points within 100 km are not located in the

mountains and therefore should not be included in the

fractional coverage calculation. The EAS approach

was a compromise between Point and Frac, producing

a smoother field than the Point method but a sharper

field than the Frac method.

b. CPE forecasts

To assess the mean squared error of the HREFv2

probability forecasts, plots of FBS as a function of

FIG. 7. As in Fig. 6, but for the 1.0-in. threshold.
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spatial scale were created for the 0.5-in. (Fig. 6) and

1.0-in. (Fig. 7) thresholds over the CONUS and West

verification regions. Plots for the East region (not

shown) were very similar to the CONUS plots. The

observation probabilities were generated on each spa-

tial scale, while the forecast probabilities were not mod-

ified; in other words, the EAS probabilities were

calculated using different radii at each grid point, while

the Frac probabilities were obtained via 100-km radii

at all grid points. Pairwise difference curves for Point 2
EAS, Point2 Frac, and EAS2 Frac are also displayed.

Bootstrap confidence intervals at the 95% level for the

difference curves were obtained using 1000 replica-

tions in order to assess statistical significance. If the

confidence interval of the difference curve did not en-

compass 0, then the differences were considered to be

FIG. 8. Attributes diagrams for the Point (black line), Frac (red line), and EAS (blue line) approaches at the 0.5-in. threshold over the

CONUS, East, and West verification regions for 3 Feb–30 Sep 2017. The perfect reliability line (solid black), the no-skill line (dashed

black), and the no-resolution line (dashed black) are depicted. The total number of forecasts at each discrete probability value or within

each probability bin are also plotted beneath each attributes diagram.

1072 WEATHER AND FORECAST ING VOLUME 33



statistically significant (Wilks 1995); in such instances,

the confidence intervals were depicted in boldface. A

triangle was placed over the confidence intervals that

encompassed 0, or those where the differences were not

statistically significant.

The Point probabilities had the highest FBS in all

regions for both thresholds, indicating they were con-

sistently associated with the largest forecast errors. The

confidence intervals indicate that the differences be-

tween the Point approach and both fractional coverage

methods were statistically significant in every region

for all spatial scales on the observed grid. Generally,

Frac and EAS had a similar FBS over the CONUS.Over

the West, EAS had the lowest FBS at the 20-, 40-, and

60-km spatial scales for the 0.5-in. threshold, while

Frac had the lowest FBS at the 80- and 100-km scales

(Fig. 6)—scales which were closest to that used to

compute the Frac probabilities (100 km). The differ-

ences between Frac and EAS were statistically signifi-

cant at all spatial scales. The behavior at the 1.0-in.

FIG. 9. As in Fig. 8, but for the 1.0-in. threshold.
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threshold was similar (Fig. 7); the differences between

Frac and EAS were statistically significant at 20, 80, and

100 km, but they were not significant at 40 and 60 km.

Attributes diagrams were constructed for all three

regions at the 0.5-in. (Fig. 8) and 1.0-in. (Fig. 9) thresh-

olds. Note that the curves for the Point method have

values at each discrete point probability (e.g., 0, 0.125,

and 0.25), while the curves for the two postprocessed

techniques have values corresponding to each proba-

bility bin (e.g., 0–0.1, 0.1–0.2, and 0.2–0.3). For 0.5 in.,

the Point probability curves were below the perfect

reliability line for all regions, which was indicative of

overforecasting. The overforecasting bias was most

prevalent over the West, where the curve fell below

the no-skill line for the 0.125, 0.25, and 0.375 probabil-

ities. The Frac probabilities reduced the overforecast-

ing bias of the Point probabilities. However, the

corresponding probability curves were generally above

the perfect reliability line, which was indicative of

underforecasting. In addition, the number of forecasts

plots illustrates that the Frac probabilities had a very

low event frequency at higher probability values.

Consequently, while Frac often appeared to be the

closest to the perfect reliability line for the 0.8–0.9

FIG. 10. Graphs of AUC scores as a function of forecast lead time for the Point (black line), Frac (red line), and

EAS (blue line) approaches at the 0.5-in. threshold over the (top) CONUS, (middle) East, and (bottom) West

verification regions for 3 Feb–30 Sep 2017. Pairwise difference curves for Point2 EAS (dashed blue line), Point2
Frac (dashed red line), and EAS 2 Frac (dashed teal line) are also displayed. The 95% bootstrap confidence

intervals for the difference curves were obtained using 1000 bootstrapping replications. If the differences are

statistically significant, the confidence intervals are depicted in boldface. Triangles are associated with confidence

intervals where the differences are not statistically significant.
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and 0.9–1.0 probability bins, the sample size was nearly

an order of magnitude smaller than that of the other

methods. For instance, there were 146 708, 2878, and

68 913 total forecasts over the West for a 100% Point

probability and within the 0.9–1.0 probability bin

for Frac and EAS, respectively. The EAS probabil-

ity curves lied relatively close to the perfect reliability

line. Over the CONUS and the East, EAS achieved

nearly perfect reliability for all but the highest proba-

bilities. EAS had a slight overforecasting bias, most

noticeably at the higher probability values, and at times

a slight underforecasting bias, particularly for the lower

probability values. Nevertheless, EAS yielded a signifi-

cant improvement compared to the overforecasting

bias of Point, and it reduced the underfore-casting bias

of Frac. The superior performance of the EAS method

over the West illustrates that it was the most reliable

over complex terrain.

For the higher impact precipitation events at the 1.0-in.

threshold, the trends were generally the same but

magnified (Fig. 9). The overforecasting of Point is clear;

in the CONUS and the East, the curve was located

below the no-skill line for the 0.125 probability, and in

the West, the curve was located below the no-skill line

for the 0.125, 0.25, 0.375, and 0.5 probabilities. The un-

derforecasting bias of Frac had also increased; for

instance, there were no forecasts over the West that

fell into the 0.8–0.9 or 0.9–1.0 probability bins. The

EAS method was overall closest to the perfect reliabil-

ity line. The exception is for the higher probabilities over

the CONUS and the East, where Frac was the most re-

liable at the 0.7–0.8, 0.8–0.9, and 0.9–1.0 probability bins.

Analyses of the AUC score as a function of forecast

lead time were constructed for the three regions in order

to evaluate the discriminatory ability of each method.

Recall that an AUC score greater than 0.7 is indicative

of a useful probabilistic forecast, and that for rare-event

forecasting applications AUC is sensitive to the height

of the top-most point. As with the FBS plots, the pair-

wise difference curves and the corresponding 95%

bootstrap confidence intervals are included. For 0.5 in.,

Point generally had the highest AUC, except at earlier

lead times over the CONUS and the East (Fig. 10). This

result is consistent with the Point method preserving the

highest amount of detail, making it easier to achieve

higher probability values; thus, it had more sharpness

and a higher discriminatory ability than the fractional

coverage techniques. The Frac andEAS approaches had

similar AUC scores, except over the West where EAS

consistently outperformed Frac. The confidence inter-

vals illustrate that the differences between Frac and

EAS were statistically significant at all lead times over

the CONUS and the West. The AUC scores for the

1.0-in. threshold (not shown) were worse than those for

0.5 in., and at longer lead times the scores for Frac and

EAS fell below 0.7.

c. The 2017 FFaIR experiment

To complement the objective verification scores pre-

sented in the previous section, subjective verification

statistics from the 2017 FFaIR experiment were com-

piled. Figure 11 is a box plot of all the subjective scores

from the 2017 FFaIR experiment for each of the three

probability methods (Fig. 26 in Perfater and Albright

2017). The standard deviation of the FFaIR scores

represents a measure of the variance or spread from

the mean score. The Point method had the highest

mean score of 6.44 out of 10 with a standard deviation of

1.83. The EAS method had a comparable mean score of

6.31 with a standard deviation of 1.69. The Frac method

had the lowest mean score, a 5.42, with a standard de-

viation of 1.31. The notches on the box plot represent

the 95% confidence intervals around themedians, which

were 7, 6, and 6.5 for Point, Frac, and EAS, respectively.

The confidence interval for Frac did not overlap with

the confidence intervals for Point or EAS, indicating the

median of Frac was significantly different from the me-

dians of Point and EAS.

The participants also provided valuable feedback on

the different probability schemes. Since the probabili-

ties were dependent on the underlying HREFv2 fore-

cast, the comments focused more on how the three

different methods visually represented the probabilistic

FIG. 11. Box plot of all the subjective verification scores from the

2017 FFaIR experiment for each of the three probability methods

for 19 Jun–21 Jul 2017.
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field and the utility they would each provide to a fore-

caster. The traditional point probabilities were generally

favored due to the large amount of detail they contained

andwere considered particularly useful for smaller-scale

features, such as diurnally driven or sea-breeze-induced

convection that often occurred in the Southeast. In these

cases, the Point probabilities typically gave some in-

dication that a precipitation event was possible whereas

the other two schemes showed little to no indication.

One forecaster stated that they ‘‘would rather have a

certain amount of overforecasting and more detail even

if the verification wasn’t as great.’’

The Frac approach was generally the least favored

because participants felt that it smoothed out the

probability field too much, producing very low proba-

bilities. A related key finding from the 2016 HMT–WPC

Winter Weather Experiment was that narrow lake-

effect snowbands were often not associated with high

probabilities when the Frac method was employed

(Perfater and Albright 2016). Conversely, the EAS ap-

proach garnered positive feedback from participants

as the variable radii allowed for more detail in certain

situations that was often appreciated by the forecasters.

Both Frac and EAS were preferred by forecasters as a

tool to use when drawing deterministic QPF contours

because Point was described as too noisy. One sugges-

tion for modifying the EAS method was to reduce the

lower bound of the radii below 10km in order to

produce a greater compromise between the extreme

detail of Point and the smoother field of Frac. This

suggestion was attempted by setting the lower bound

to 0 km, which yields a traditional point probability, but

the resultant probability field looked too sharp to be

reliable with abrupt transitions from low to high values

(not shown).

As an alternative solution, the EAS method was run

using a 5 0.5 for (3), hereafter referred to as EAS 0.5.

This modificationmade it easier to achieve the similarity

criteria, lowering the radii values and increasing the

sharpness of the probability field (Fig. 12). Attributes

diagrams from 1 August to 30 September 2017 for the

0.5-in. threshold (Fig. 13) reveal that EAS 0.5 was

comparably reliable to EAS. In general, the under-

dispersion associated with EAS 0.5 was larger thanEAS.

FIG. 12. Plots of probabilities (%) of 0.5 in. of precipitation accumulating over the 6-h period beginning at

1800 UTC 27 Aug 2017 and ending at 0000 UTC 28 Aug 2017 for the (a) EAS and (b) EAS 0.5 methods. These

probabilities are 36-h forecasts from the 1200 UTC 26 Aug HREFv2 cycle. (c),(d) Corresponding plots of the radii

values (km) utilized by the EAS methods are also displayed.
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However, EAS 0.5 was arguably the most reliable over

the West, the region most dominated by complex ter-

rain. The behavior at the 1.0-in. threshold was similar

(not shown). Applying the EAS technique with a 5 0.5

yielded a substantial improvement over the Point

method, which is encouraging since the forecasters had a

strong preference for sharp forecasts with a high amount

of detail. Based on the subjective verification presented

herein, the HMT–WPC staff recommended the EAS

probability technique be transitioned to WPC opera-

tions (Perfater and Albright 2017).

4. Discussion and conclusions

Traditional ensemble point probabilities are very

sharp because CPEs tend to be underdispersive and are

FIG. 13. Attributes diagrams for the Point (black line), Frac (red line), EAS (blue line), and EAS 0.5 (teal line) approaches at the 0.5-in.

threshold over the CONUS, East, and West verification regions for 1 Aug–30 Sep 2017. The perfect reliability line (solid black), the no-

skill line (dashed black), and the no-resolution line (dashed black) are depicted. The total number of forecasts at each discrete probability

value or within each probability bin are also plotted beneath each attributes diagram.
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of limited size. Member forecasts of small-scale events

often do not overlap. For instance, individual model

forecasts that do not overlap but are relatively close to

one another will produce a 0% point probability over

the region of interest (Fig. 5). Fractional coverage

methods attempt to address these issues by taking the

spatial uncertainty of a forecast into account. The Frac

method produces a much smoother probability field,

making it more difficult to achieve high probabilities

as observed in the reliability diagrams (Figs. 8, 9, and

13). While an inability to predict high probabilities is

not always detrimental, probabilistic forecasts using

the Frac method are often not sharp enough to make

deterministic decisions with high confidence. The un-

derlying assumption with Frac is that the event could

occur at any point within a 100-km radius around the

point of interest. With locally forced events with little

uncertainty, such as orographic precipitation or lake-

effect snowbands, this assumption is often physically

impossible. A 100-km radius would include points that

are not in the mountains or downstream of a lake.

The EAS approach attempts to retain the value from

both the Point and Frac approaches in an adaptive way

by increasing spread, via inflating the radius for proba-

bility calculation, while preserving the relative magni-

tude of the spread–skill relationship. As demonstrated

for a high-impact precipitation event (Fig. 1) and in an

idealized sense (Fig. 5), the EAS technique produces

a smoother field than the Point method, but a sharper

field than the Frac method. Both fractional coverage

methods have a lower FBS than the traditional point

probabilities over all verification regions, indicating the

fractional coverage techniques are associated with

smaller forecast errors, and EAS has a lower FBS than

Frac over the West at smaller spatial scales (Figs. 6 and

7). Figures 8, 9, and 13 depict how EAS is more reliable

than Point or Frac, and especially so over the West, a

region dominated by complex terrain. Furthermore,

while Point has the highest overall AUC scores, EAS

consistently has a higher AUC than Frac over the West

(Fig. 10).

The 2017 HMT–WPC FFaIR experiment brought

together individuals from a wide variety of backgrounds

and institutions across the meteorological field, in-

cluding operational forecasters. Having a variety of

perspectives in the same room fostered great discus-

sions, which directly led to product enhancements to the

EAS technique. Figure 11 illustrates that participants

scored the Point and EAS methods higher than the Frac

method. The traditional point probabilities were often

favored because of the large amount of detail they

contained, but they were described as too noisy for

drawing deterministic QPF contours; the participants

therefore suggested increasing the amount of detail

present in the EAS probabilities. To accomplish this,

the similarity criteria parameter was modified to allow

for more finer-scale details in the probability field,

making it easier to achieve (4). It remains unclear

whether the primary goal of these postprocessing tech-

niques is to make forecasts look good in order to better

please the users, or to verify well. As a consequence,

future work on probabilistic forecast calibration needs

to be cognizant of the fact that some user groups actu-

ally prefer forecasts that have less-than-ideal verifica-

tion statistics.

Based on the eight months of objective verification and

the subjective feedback and scores obtained through the

2017 FFaIR experiment, the authors recommend the

EAS postprocessing technique for transition to National

Weather Service (NWS) operations. The technique is

ensemble agnostic, meaning it is applicable to any CPE

and not just HREFv2. However, the authors note that

different ensembles might work best with different set-

tings whether they are more or less dispersive. While the

EAS technique herein has only been applied to 6-h QPF,

it can be applied to other variables, including but not

limited to accumulated snowfall, precipitation type,

composite reflectivity, and updraft helicity. Efforts to

accommodate these variables are ongoing.
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